
 It regularizes the latent space by
encouraging  q ϕ(z∣x) to be
close to p(z), the prior
distribution.

Lets visualize this with very low level example for image generation.
Assume we have image matrix like this:

 100  150   200
50  125  175
25   75  225  

The model learns to reverse the noising process.
 It takes a noisy image xt and predicts the noise defined over that input .
It calculates the loss by looking real noise and predicted noise and updates the model parameters based on that.
And ofcourse as a last step it reverses the predicted noise to generate the original input sample.

Regularization term

Generative Modeling

VAEs Autoregressive Normalizing Flow Diffusion
They aim to learn latent representations of data.  
 
1- Encoder qϕ(z∣x)  that maps input data x
to 
a latent space z.
2- Decoder pθ (x∣z) that reconstructs the
input data from the latent space 

Reconstruction term

True Posterior:  p(z∣x) is the actual distribution of latent
variables z given observed data  x and we want to calculate
that BUT p(z∣x) is intractable to calculate especially for large
scale inputs because each dimension will bring an extra nested
integral calculation. 

Cannot imagine this for images 

That is why during training we use Variational Inference
and convert this non-intractable problem into a ELBO

Objective: Minimize the KL divergence between the
approximate distribution qϕ(z∣x) and the true
posterior  p(z∣x):
𝜙∗ = argmin𝜙 KL(𝑞𝜙(𝑧∣𝑥)∥𝑝(𝑧∣𝑥))

Reparametrization Trick
Here qϕ(z) or qϕ(z|x) is not differentible because of the randomness in
sampling z. 

To sample z, we would typically: 
Draw a random variable ϵ from a standard normal distribution
N(0,1).

1.

     2. Compute z using the transformation:

z = μϕ(x) + σϕ(x)⋅ϵ
Here, ϵ is a random variable, and z depends on this randomness. 
The value of z changes every time you sample a new  ϵ, making it 
non-differentiable because the randomness introduces discontinuity.

The fundamental concept involves representing a sequence of data points by
defining each point as a function of the preceding points.

Lets think about image generation: 

xi is the value of the i-th pixel, and x1:i−1 are the values of all preceding pixels.

There we have to use masked convolutions because as can be seen from the formula that we
cannot have access to all pixel values. In a masked convolution, we ensure that the receptive field
ofeach pixel only includes the previously generated pixels.
For each pixel xi,j , the conditional probability is given by p(xi,j∣x1:i−1,:,xi,1:j−1)

Then the loss for generating an image can look like this:

The loss for construction an image would look like this:

The goal of normalizing flows is to model the data distribution p(x). 
This is done by transforming a simple base distribution p(z)(typically a standard normal distribution) 
through a series of invertible transformations fθ . 

Injective Rule: If a function never maps to the same output of different inputs then it is injective. 
f(x1)       f(x2)

Surjective Rule: If there is an input value for an output, it is subjective. In other words, if
there is a solution for a function than it is surjective.

In flow models we start with simple distribution (for example Gaussian)
and apply invertible and learnable flow functions fθ  parameterized by θ.
Each transformation fi  maps a variable zi   to zi+1 . 

fθ  = fK  ∘ fK−1  ∘… ∘ f1 

Transformed data distribution matches the original data distribution

Apply the sequence of transformations to the data point x to get z = fθ(x)
Compute the log-likelihood of z under the base distribution p(z):

 log p(z) = log N(z ; 0, I) = −0.5 (zT z + D log (2π) )  where D is the dimensionality of z.

Then compute

The total log-likelihood of the data point x is

Note: The transformations we apply need to be inversible.
To say a function is inversible it has to be surjective and injective

Composed of 2 main steps:
Forward Diffusion process1.
Reverse Diffusion process2.

Forward Diffusion process

This process adds noise to input data step by step until it becomes indistinguishable from random noise. 

Reverse Diffusion process

Define Gaussian Noise to the data over T timesteps. 
At each timestep t, the image x is progressively corrupted: 

We have neural network (generally U-Net).


