Lets visualize this with very low level example for image generation. Assume we have image matrix like this:

The model learns to reverse the noising process.

It takes a noisy image xt and predicts the noise defined over that input.

1- Encoder $q\phi(z|x)$ that maps input data x to

> It calculates the loss by looking real noise and predicted noise and updates the model parameters based on that. And ofcourse as a last step it reverses the predicted noise to generate the original input sample.

True Posterior: $p(z|x)$ is the actual distribution of latent variables z given observed data x and we want to calculate that BUT $p(z \mid x)$ is intractable to calculate especially for large scale inputs because each dimension will bring an extra nested integral calculation.

Cannot imagine this for images

Generative Modeling

That is why during training we use Variational Inference and convert this non-intractable problem into a ELBO

VAEs Autoregressive Normalizing Flow Diffusion

They aim to learn latent representations of data.

Here $q\phi(z)$ or $q\phi(z|x)$ is not differentible because of the randomness in sampling z.

To sample z, we would tupically

1.Draw a random variabl $\epsilon \in$ from a standard normal distribution
N(0,1).

a latent space z. 2- Decoder po $(x \mid z)$ that reconstructs the input data from the latent space

Objective: Minimize the KL divergence between the approximate distribution $q\phi(z|x)$ and the true posterior $p(z | x)$

 $\phi*$ = argmin ϕ KL($q\phi(z|x)/p(z|x)$)

Here, ϵ is a random variable, and z depends on this randomness. The value of z changes every time you sample a new ϵ , making it non-differentiable because the randomness introduces discontinuity.

Minimize $1:(x - \hat{x})^2$

There we have to use masked convolutions because as can be seen from the formula that we cannot have access to all pixel values. In a masked convolution, we ensure that the receptive field ofeach pixel only includes the previously generated pixels.
For each pixel xi,j, the conditional probability is given by p(xi,j∣x1:i−1,:,xi,1:j−1)

The goal of normalizing flows is to model the data distribution $p(x)$. This is done by transforming a simple base distribution $p(z)$ (typically a standard normal distribution) through a series of invertible transformations fθ.

Injective Rule: If a function never maps to the same output of different inputs then it is injective. $f(x1) \neq f(x2)$

Sur jective Rule: If there is an input value for an output, it is sub jective. In other words, if there is a solution for a function than it is surjective.

In flow models we start with simple distribution (for example Gaussian) and apply invertible and learnable flow functions fo parameterized by θ . Each transformation f i maps a variable zi to zi+1.

2. Compute z using the transformation:

$z = \mu \varphi(x) + \sigma \varphi(x) \cdot \epsilon$

The fundamental concept involves representing a sequence of data points by defining each point as a function of the preceding points.

$$
p(\mathbf{x}) = p(x_1) \prod_{d=2}^{D} p(x_d | \mathbf{x}_{
$$

For example: $p(\mathbf{x}) = p(x_1) p(x_2|x_1) p(x_3|x_1, x_2) p(x_4|x_1, x_2, x_3)$

Define Gaussian Noise to the data over T timesteps. At each timestep t, the image x is progressively corrupted:

$$
x_t = \sqrt{\alpha_t} x_0 + \sqrt{1-\alpha_t} \epsilon, \quad \epsilon \sim \mathcal{N}(0, I)
$$

Lets think about image generation:

<u>xi is the value of the i-th pixel, and x1:i−1</u> are the values of all preceding pixels.

Then the loss for generating an image can look like this:

$$
\mathcal{L}(x) = -\sum_{i=1}^{H}\sum_{j=1}^{W} \log p_{\theta}(x_{i, j} | x_{1:i-1, :}, x_{i, 1:j-1})
$$

The loss for construction an image would look like this:

 $\mathcal{L}(x) = -[\log p_{\theta}(100) + \log p_{\theta}(150|100) + \log p_{\theta}(200|100, 150) + \cdots]$

fθ = fK ∘ fK−1 ∘… ∘f1

Transformed data distribution matches the original data distribution

- Apply the sequence of transformations to the data point x to get $z = f_{\theta}(x)$
- Compute the log-likelihood of z under the base distribution $p(z)$:
- $logp(z) = logN(z:0, I) = -0.5 (zT z + D log(2\pi))$ where D is the dimensionality of z.

Then compute

$$
\log\left|\det\left(\frac{\partial f_{\theta}(x)}{\partial x}\right)\right|
$$

The total log-likelihood of the data point x is

$$
\log p(x) = \log p(z) + \log \left| \det \left(\frac{\partial f_{\theta}(x)}{\partial x} \right) \right|
$$

Note: The transformations we apply need to be inversible. To say a function is inversible it has to be sur jective and in jective Composed of 2 main steps: 1.Forward Diffusion process 2.Reverse Diffusion process

Forward Diffusion process

This process adds noise to input data step by step until it becomes indistinguishable from random noise.

Reverse Diffusion process

We have neural network (generally U-Net).

