o
VAEs

They aim to learn latent representations of data.

1- qd(z x) that maps input data ¥
to
a latent space 2.

2- Decoder pelx 2) that reconstructs the
input data from the latent space

0b jective: Minimize the KL divergence between the
approximate distribution q(z x) and the true
posterior p(z ¥):

¢+ =argming KL(gp(z) plz X))

is the actual distribution of latent

variables 2 given observed data x and we want to calculate

that BUT is intractable to calculate especially for large

scale inputs because cach dimension will bring an extra nested
integral calculation. -

Cannot imaginc this for images ~ %,°

That is why during training we use
and convert this non-intractable problem into a ELBO

togp(0) =log | pa(xlzp(@) da

= log ‘j:g; PoxIDD() dz
e [pg(xn)p(z)]
@] qy@)
- [10 ,pg(x|z)p<z)]
T O [T, @
= Ez-qymllogpe (x]2)] — IEz~qd,(z)[lOg p(z) — logqy(2)]
= Egqym[logpe(x12)] = KL[q4(2) Il p(2)]

It reqularizes the latent space by
encouraging q Oz x) to be
close to plz), the prior
distribution.

Here or is not differentible because of the randomness in
sampling 2.

To sample 2, we would typically:
1.Draw a random variable € from a standard normal distribution
N(0.9).
2. Compute 2 using the transformation:

2=pd(x) +

Here, € is a random variable, and z depends on this randomness.

The value of 2 changes every time you sample a new €, making it
non-dif ferentiable because the randomness introduces discontinuity.

Minimize 1:(x — £)?

P
Encoder ,:/ Decoder 2
an B !
e d

N, I) 2™, ¢ —

Minimize 2: 2 7L (exp(o;) — (1+07) + 12

Autoregressive

The fundamental concept involves representing a sequence of data points by
defining cach point as a function of the preceding points.

D
pe0 = pC) | [pGualxea)
a=2

For example: p(x) = p(x1) p(xz|x1) p(xs|x1, X2) p(Xal Xy, X2, X3)

Lets think about image generation:
xi is the value of the i-th pixel, and x1:i-1 are the values of all preceding pixels.

Then the loss for generating an image can look like this:

H W

L(z) =— Z Zlogpﬂ(mi,j‘mlzi—l,:a Ti1j-1)

i=1 j=1

There we have to use masked convolutions because as can be seen from the formula that we
cannot have access to all pixel values. In a masked convolution, we ensure that the receptive field
of'cach pixel only includes the previously generated pixels.
For cach pixel xi, j, the conditional probability is given by

Lets visualize this with very low level example for image generation.
Assume we have image matrix like this:

100 150 200

50 125 175
25 75 225

The loss for construction an image would look like this:

L(z) = —[log ps(100) + log pp(150/100) + log py(200|100, 150) + - - -]
—

softmax Lﬂ

0 T 255

A

H =
£ ~.
/

;

4

o || = | = | =

(=2 == == B I)

(=20 == =T e)
(== I = =T I)

oc|lo|~|~|~

Generative Modeling

N

Normalizing Flow

The goal of normalizing flows is to model the data distribution p(x).

This is done by transforming a simple base distribution p(z)(typically a standard normal distribution)

through a series of invertible transformations

In flow modecls we start with simple distribution (for example Gaussian)
and apply invertible and learnable flow functions f'o parameterized by o.
Each transformation ' maps a variable zi to zi+1.

Transformed data distribution matches the original data distribution

« Apply the sequence of transformations to the data point ¥ to get z =
« Compute the log-likelihood of z under the base distribution p(2):
logp(2) =logN(z:0,1) =05 (2T 2+ D log(2m)) where Dis the dimensionality of 2.

« Then compute

Ofs(x)
det | ——
(oz
The total log-likelihood of the data point x is
9fs(z)
aer (24

_The transformations we apply need to be inversible.
To say a function is inversible it has to be sur jective and in jective

log

log p(z) = log p(z) + log

Sur jective Rule: If there is an input value for an output, it is sub jective. In other words, if
there is a solution for a function than it is sur jective.

Injective Rule: If a function never maps to the same output of different inputs then it is in jective.

)7 F(x2)

Diffusion
Composced of 2 main steps:
1.Forward Diffusion process
2.Reverse Dif fusion process

q(z|x) q(2y|2,) q(z3]2,) q(z4|23) a(z5|z,)

p(x|z;) P(z|2,) p(2s]23) pl2zy]2,) P(2z4]2;) p(25)
Forward Diffusion process

This process adds noise to input data step by step until it becomes indistinguishable f'rom random noise.

forward diffusion (Gaussian diffusion) 9 (Ze+1/Z0) = N (W1 :ﬂtztr/”t)

backward diffusion

p(@ilzes) =N (UNN(Zt+1):<71\ZIN(Zt+1))
Defiine Gaussian Noise to the data over T timesteps.
At cach timestep t, the image x is progressively corrupted:

z, = oz + 1 — e, €~ N(0,I)

We have neural network (generally U-Net).

Um\n‘ R in
H—‘\‘.\[[’7 ,\\1[y
—)

The model learns to reverse the noising process.

It takes a noisy image ¥t and predicts the noise def'ined over that input.

It calculates the loss by looking real noise and predicted noise and updates the model parameters based on that.
And of course as a last step it reverses the predicted noise to generate the original input sample.

